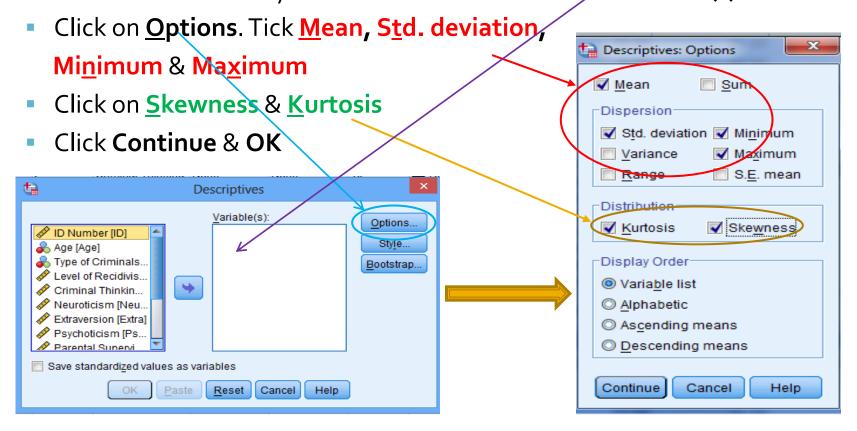
# Descriptive Statistics and Normality Testing

Dr Daniel Boduszek & Dr Katie Dhingra



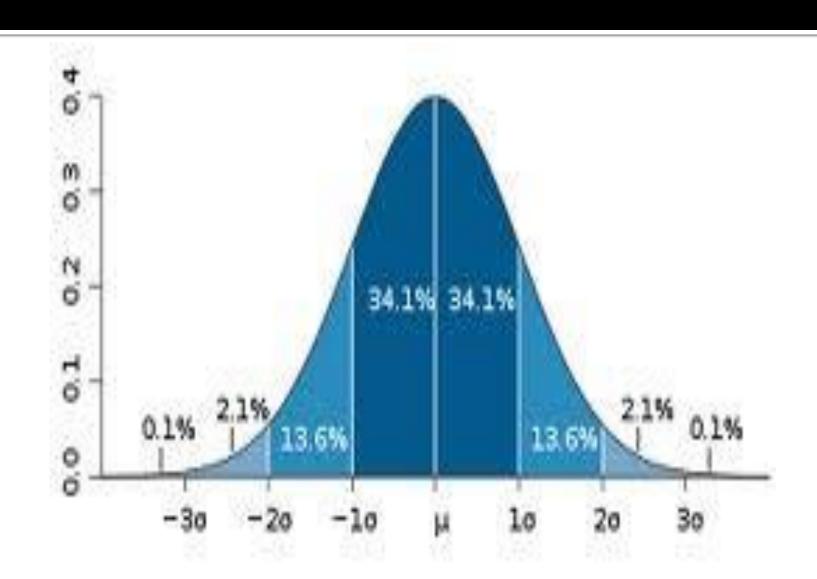



#### Introduction

- Descriptive Statistics help you to:
  - Describe the characteristics of your sample in the Method section of your thesis/publication
  - Check variables for any violation of the assumptions
  - Address specific research question

#### **Descriptive Statistics**

- Continuous Variables
  - Analyze, Descriptive Statistics, then Descriptives
  - Move variables that you want statistics for into the Variable(s) box



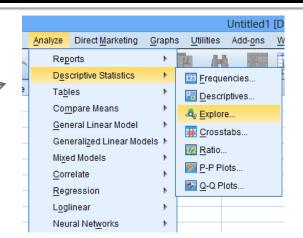

#### **Descriptive Statistics**

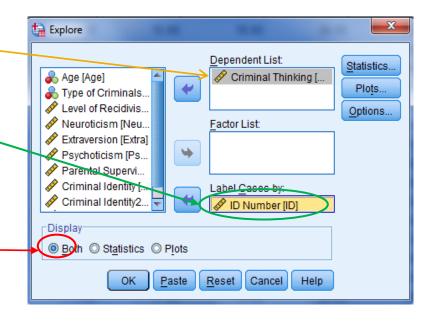
- N = number of participants
- Min & Max = range of the scores
- Mean = average score
- Std. Dev = Standard deviation (how much on average the individual values differ from the mean. The smaller the SD the less each score varies from the mean
- Skewness = provides an indication of the symmetry of the distribution
- Kurtosis = information on the "peakedness" of the distribution

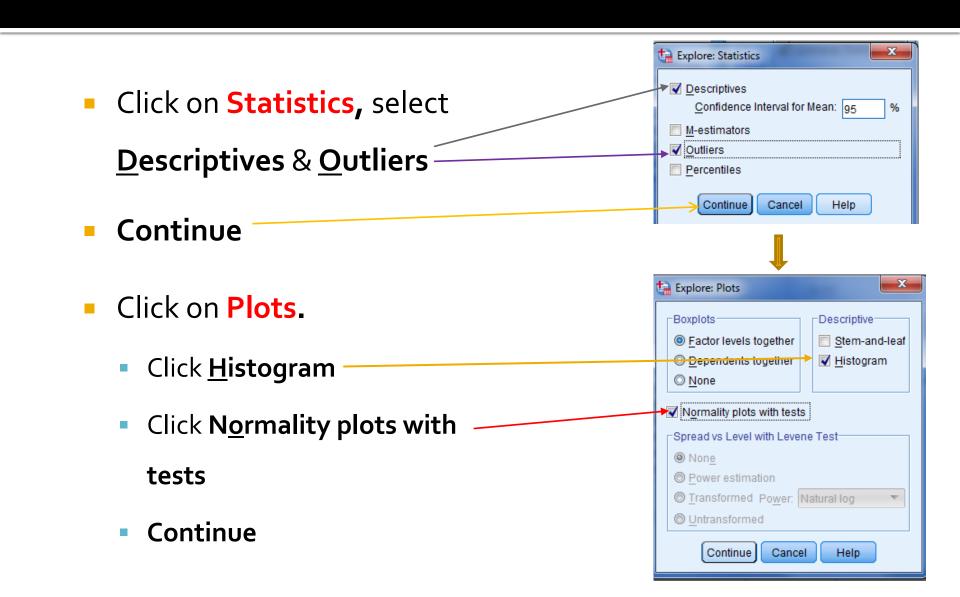
#### **Descriptive Statistics**

|                    | N         | Minimum   | Maximum   | Mean      | Std. Deviation | Skewness  |            | Kurtosis  |            |
|--------------------|-----------|-----------|-----------|-----------|----------------|-----------|------------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic      | Statistic | Std. Error | Statistic | Std. Error |
| Criminal Thinking  | 89        | 10.00     | 43.00     | 29.1685   | 7.90747        | 240       | .255       | 413       | .506       |
| Criminal Identity  | 89        | -9.00     | 36.00     | 18.7303   | 8.93762        | -1.094    | .255       | 2.363     | .506       |
| Valid N (listwise) | 89        |           |           |           |                |           |            |           |            |




- ☐ Most data will be <u>relatively</u> normally distributed (bell-shaped)
- ☐ Normal distribution refers to a distribution of scores that normally occurs in a population
- ☐ Normal distributions indicate that the majority of individuals score in the middle range of collected data, with fewer people in the extreme high & low ends


- Normally distributed data is always what we would like to have
  - Inferential statistics are all designed to perform appropriately with normally distributed data.
- Using non-normally distributed data for inferential statistics is like using petrol in a diesel engine car.
  - Things tend to not to go well!


- There are four ways to tell if your data is normally distributed:
- 1. Inspect your mean, mode, and median scores.
- Inspect a histogram and fit a normal curve to visually determine it's normality.
- Look at the skewness and kurtosis along with their standard errors.
- Perform a <u>statistical test</u>.



- SPSS procedure
  - Analyze, Descriptive Statistics,
     then Explore
  - Click on the variable and move it into <u>Dependent List</u> box
  - In the Label <u>Cases by</u> put <u>ID</u>
     variable
  - In the **Display** section select





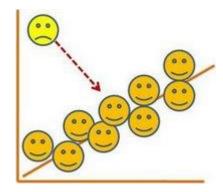


- Click on the Options
- Exclude cases
   pairwise (excludes the cases only if they are missing the data required for the specific analysis)
- Continue & OK



**Descriptives** 

| Descriptives      |                             |             |           |            |  |  |  |
|-------------------|-----------------------------|-------------|-----------|------------|--|--|--|
|                   |                             |             | Statistic | Std. Error |  |  |  |
| Criminal Thinking | Mean                        |             | 29.1685   | .83819     |  |  |  |
|                   | 95% Confidence Interval for | Lower Bound | 27.5028   |            |  |  |  |
|                   | Mean                        | Upper Bound | 30.8343   |            |  |  |  |
|                   | 5% Trimmed Mean             |             | 29.3733   |            |  |  |  |
|                   | Median                      |             | 28.0000   |            |  |  |  |
|                   | Variance                    |             | 62.528    |            |  |  |  |
|                   | Std. Deviation              |             | 7.90747   |            |  |  |  |
|                   | Minimum                     |             | 10.00     |            |  |  |  |
|                   | Maximum                     |             | 43.00     |            |  |  |  |
|                   | Range                       |             | 33.00     |            |  |  |  |
|                   | Interquartile Range         |             | 11.00     |            |  |  |  |
|                   | Skewness                    |             | 240       | .255       |  |  |  |
|                   | Kurtosis                    |             | 413       | .506       |  |  |  |


☐ In a normal distribution the mean, mode, & median will all be identical!

- ☐ If a skew or kurtosis result is more than twice its standard error than you may /have a problem with normality.
- On the other hand, skew is not considered problematic unless its value is greater than +/- 1.
- ☐ If skewness is OK then there is no need to worry about kurtosis.

Extreme Values table – ID values of the most extreme cases

**Extreme Values** 

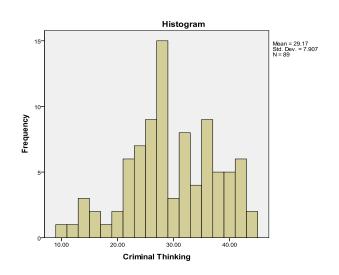
|                   |         |   | Case Number | ID Number | Value |
|-------------------|---------|---|-------------|-----------|-------|
| Criminal Thinking | Highest | 1 | 20          | 20        | 43.00 |
|                   |         | 2 | 88          | 88        | 43.00 |
|                   |         | 3 | 19          | 19        | 42.00 |
|                   |         | 4 | 87          | 87        | 42.00 |
|                   |         | 5 | 89          | 89        | 42.00 |
|                   | Lowest  | 1 | 5           | 5         | 10.00 |
|                   |         | 2 | 44          | 44        | 12.00 |
|                   |         | 3 | 35          | 35        | 13.00 |
|                   |         | 4 | 33          | 33        | 13.00 |
|                   |         | 5 | 42          | 42        | 14.00 |

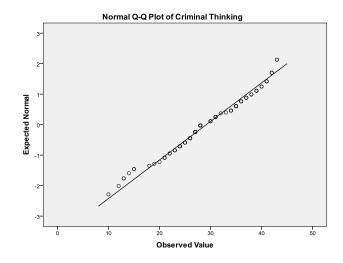


Test of Normality table – non-significant value (Sig > .05) indicates normality

**Tests of Normality** 

|                   | Kolm      | nogorov-Smir | nov <sup>a</sup> | Shapiro-Wilk |    |      |  |
|-------------------|-----------|--------------|------------------|--------------|----|------|--|
|                   | Statistic | df           | Sig.             | Statistic    | df | Sig. |  |
| Criminal Thinking | .087      | 89           | .094             | .975         | 89 | .080 |  |


a. Lilliefors Significance Correction


Less than 40 cases in your data set

 Histogram – check the shape of distribution

#### Normal Q-Q Plot

 Reasonably straight line suggests a normal distribution





#### Normality



- Very sensitive to both small & large data sets.
  - Small not enough power and inability to detect any variation from normality – thus non-normally distributed data can be erroneously deemed to be normally distributed.
  - Large power to detect even minute deviations from normality – thus normally distributed data can be erroneously deemed to be non-normally distributed.

#### Normality

- Inspect the test of normality results but also inspect your histograms & if your data is 'normal enough' you are good to go!
  - Provided you have a large enough sample
- With a big enough sample (> than 100) minor violations of normality are not a problem – using clever witchcraft SPSS is able to take care of these violations.

# Thank you for your time!

